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We have carried out high-precision measurements of the heat transport in 
intermediate-size rectangular layers of Convecting normal liquid 4He with Prandtl 
numbers of 0.52 and 0.70. The containers used for these experiments had horizontal 
dimensions, in units of the height d ,  of 13.4 x 5.95 (cell 1) and 18.2 x 8.12 (cell 11). The 
slopes N ,  of the Nusselt curves were 0.56 and 0.70 respectively for cell I and cell 11. 
These values are significantly lower than predictions for N ,  for horizontally unbound 
layers, but comparable with results obtained in cylindrical containers of liquid 
helium with roughly the same number of convection rolls. For the two containers, the 
onset of the first instability after the onset of convection occurred at Rayleigh 
numbers R, that were in reasonable quantitative agreement with the predictions of 
Busse and Clever for the skewed-varicose instability. For both containers, the 
transition a t  R, was characterized by long transients ranging from - lo2 to - lo3 
vertical-thermal-diffusion times. A decrease in the Nusselt number was also observed. 
As the Rayleigh number was increased above R,, a new steady state evolved and 
then additional transitions were observed. These transitions occurred a t  Rayleigh 
numbers labelled R,, R,, .. ., with a total of five transitions seen in cell I and a total 
of three transitions seen for cell 11. The transition for each cell a t  R, can be related 
quantitatively to the skewed-varicose instability, and the transition a t  R, is 
associated with an oscillatory instability. For cell 11, the time-dependence beginning 
at R, persisted to the highest Rayleigh number studied, R = 11.7Rc. However, for 
container I, two more regimes of time-independent flow were observed; the last of 
these was at an unexpectedly high Rayleigh number of 6.7Rc. This work extends to 
lower Prandtl number recent studies made on moderate-size rectangular layers of 
convecting water and alcohol. 

1. Introduction 
1.1.  Overview 

Rayleigh-Bdnard convection occurs when a layer of fluid with positive expansion 
coefficient is driven into a convective state by heating the layer from below. When 
convection occurs, there is a resulting flow pattern in the form of convection rolls. 
Although much attention has been given to this system, unresolved questions 
remain. (For recent reviews see Busse 1981 ; Normand, Pomeau & Velarde 1981 ; and 
Behringer 1985.) Two of these questions which are considered in the present work 
concern the effect of sidewalls on steady convection and the nature of secondary 
instabilities on the convective rolls leading to the onset of turbulence. 

The global parameters which determine the flow are the Rayleigh number and the 
Prandtl number given by - 

ap gd3 AT R =  
KU 
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and V 

K 
Pr =-. 

Here, up is the isobaric expansion coefficient, K is the thermal diffusivity, v is the 
kinematic viscosity, g is the acceleration due to gravity, and d is the height of the 
layer across which a temperature difference AT is imposed. In  addition, the geometry 
of the confining sidewalls may significantly affect the flow. Here, we present results 
for rectangular geometries. In  this case the geometry is specified by L,x L,, 
respectively the long and short horizontal lengths expressed in units of d .  We shall 
compare our data to results obtained in cylindrical geometries for which the 
appropriate parameter is the aspect ratio r, defined by 

D r=- 
2d (3) 

where D is the diameter of the cylindrical layer. 
The fluid used in these experiments was liquid *He. This fluid is particularly 

interesting because its easily accessible Prandtl-number range, 0.5 ,< Pr 5 1, overlaps 
the value 0.7, which is typical of room-temperature gases, and extends to roughly the 
range that can be obtained with room-temperature fluids. In  addition, liquid helium 
is useful because existing cryogenic techniques permit very high-precision heat- 
transport measurements (Ahlers 1974 ; Behringer 1985). 

One goal of the present experiments is to provide a comparison to predictions for 
the secondary instabilities in the liquid-helium Prandtl-number range. For a number 
of reasons, existing experiments cannot be compared directly to theory. Many of the 
studies of convective flows employing liquid helium (Ahlers 1974; Ahlers & Behringer 
1978a,b; Ahlers & Walden 1980; Behringer et al. 1982; Walden 1983; Behringer, Gao 
& Shaumeyer 1983; Lucas, Pfotenhauer & Donnelly 1983; Pfotenhauer, Lucas & 
Donnelly 1984; Gao & Behringer 1984; Behringer 1985) have been carried out using 
cylindrical geometries. However, the patterns that form in cylindrical containers 
differ from the straight parallel rolls that are often considered in analytical theories 
(Clever & Busse 1974; Busse & Clever 1979; Bolton, Busse & Clever 1986). Those 
helium experiments that have used rectangular geometries (Maurer & Libchaber 
1980; Maeno, Hauke & Wheatley 1985) typically have had small values of L, x L, in 
order to suppress the effects of pattern disorder. Similarly, recent experiments by 
Kessler, Dallman & Oertel (1984) on air (Pr = 0.7) were performed in a small 
container. Hence, these experiments have not produced conditions that are 
appropriate for comparing to stability theories, which assume unconfined straight 
rolls. 

On the other hand, in a moderate-size rectangle, experiments in higher-Prandtl- 
number fluids by Walden et al. (1984) and by Kolodner et al. (1986), which extend 
older work (Chen & Whitehead 1968; Krishnamurti 1970; Willis & Deardorf 1970; 
Stork & Miiller 1972; Krishnamurti 1973; Whitehead 1976; Busse & Clever 1979), 
indicate that convection rolls form that are parallel to the short side of the container. 
At least some aspects of the data obtained in such a geometry can be compared in 
a quantitative way to predictions. 

In the present experiments, two rectangular containers were used with dimensions 
L, x L, = 13.4 x 5.95 (cell I) and L, x L, = 18.2 x 8.12 (cell 11). The sizes of these 
containers were chosen to fall in an intermediate-size regime in anticipation that 
straight parallel-roll patterns would occur, and that a quantitative comparison to 
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d (em) L z  L Y  Pr T i  (K) 
Cell I 0.171 fO.001 13.4 5.95 0.70 2.2042 
Cell I1 0.125f0.001 18.2 8.12 0.52 2.3485 

t&) Rc QOB (at 
Cell I 114 1590 f 280 1.002 - 0.0034 
Cell I1 38.1 1750f200 2.284 -0.0053 

TABLE 1 .  Characteristics of the convection containers. is the mean temperature at the onset of 
convection. Q,, is the same as the parameter Q used by Walden & Ahlers (1981), which in turn is 
the parameter P introduced by Busse (1967) to characterize departures from the Ober- 
beck-Boussinesq approximation. 

theory would be possible. The container sizes in dimensional units and other relevant 
information are given in table 1.  

Our measurements are taken from heat-flow experiments, and our data are 
presented as a Nusselt number N ,  which is defined as the total heat flux actually 
carried by the layer, QT, normalized by the conductive heat flux, Q c :  

N = QTIQc.  (4) 

In addition, we characterize time-dependent flows by fixing the heat flux and then 
observing fluctuations 6T in AT. A convenient representation is then the 
dimensionless quantity 6T/AT,, where AT, is the value of AT at R,, the Rayleigh 
number a t  the onset of convection. 

In  the remainder of this section, we shall review recent theory and experiments 
that are relevant to this work. Section 2 provides a description of the apparatus and 
a discussion of experimental techniques. We present our results in $3, and $4 
contains some concluding remarks. 

1.2. Review of recent theory and experiment 
Fluids such as liquid 4He or air have a stability diagram with the features given in 
figure 1, which follows the work of Clever & Busse (1974) and Busse & Clever (1979). 
Here, the stability of a horizontally infinite layer of straight parallel convection rolls 
to infinitesimal perturbations is given in terms of the Rayleigh number R and the 
dimensionless roll wavevector a. Within the region enclosed by the lines labelled 0, 
E, and SV, straight parallel convection rolls are expected to be stable to infinitesimal 
perturbations. These lines indicate when the oscillatory (0), Eckhaus (E), and 
skewed-varicose (SV) instabilities will first occur. 

In particular, if straight parallel rolls with wavenumber a, were generated in a 
fluid like liquid helium, and if R were increased gradually from R,, the skewed- 
varicose-instability (SVI) boundary would be encountered. Existing theory for a 
horizontally infinite layer considers only linear order in the perturbations and ignores 
the effects of rigid sidewalls ; thus it does not indicate what would happen following 
an increase in R above the SVI boundary. Calculations have been carried out for 
small-L containers, L 5 4, by several authors, including Kessler (1987), Kessler et al. 
(1984), and Yahata (1986, 1988). Of some interest here are the predictions made for 
the onset of time dependence. Kessler et al. find that the onset of time dependence 
for a rectangular layer of fluid having Pr = 0.71 and L, x L, = 4 x 2 occurs via an 
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FIGURE 1. Stability diagrams for the two Prandtl numbers used in our experiments, after Busse & 
Clever (1979): (a) Pr = 0.52 (cell 11), ( b )  Pr = 0.70 (cell I). The small vertical lines indicate 
estimates of the wavevectors which occur in cell I1 (a) and cell I ( b ) .  The stable region for straight 
parallel rolls is bounded by the stability curves marked 0 (oscillatory), E (Eckhaus), and SV 
(skewed varicose). The curve C is the stability boundary for the onset of convection. 

oscillatory instability. Yahata has identified both an oscillatory instability via a 
Hopf bifurcation and a real-eigenvalue mode which can also lead to periodic time 
dependence of the type found in cylindrical containers of argon and liquid helium, as 
discussed below. The time dependence that we find at the first instability is 
qualitatively different from what both sets of authors find, as discussed below. 

Information on the dynamics near the instability boundaries, and in particular the 
SVI boundary, has been obtained from recent experiments, both in liquid helium 
(Maurer & Libchaber 1980; Behringer et al. 1983; Gao & Behringer 1984) and in 
room-temperature fluids (Gollub & Steinman 1981 ; Gollub, McCarrier & Steinman 
1982; Walden et al. 1984; Pocheau, Croquette & Le Gal 1985; Kolodner et al. 1986). 
Even for horizontally large layers, the vertical boundaries may significantly affect 
the way in which the instabilities, and in particular, the SVI are manifested. To show 
this we review three types of recent experiments. 

( a )  Large rectangular containers : Gollub & Steinman (1981) and Gollub et al. (1982) 
have found that for large rectangles of water (L,  x L, = 30 x 20; Pr = 2.5) non- 
parallel convection rolls form in the absence of an appropriate external forcing effect, 
a result which has been explained by Cross (1982). Because the SVI depends strongly 
on a, the instability apparently occurs locally in such a flow pattern. 

( b )  Cylindrical containers : The SVI has also been found to play a role in lower-Pr 
measurements made in cylindrical containers. These measurements include studies 
by Pocheau et al. (1985) using argon (Pr = 0.71) with flow visualization, and high- 
precision thermal measurements by Behringer et al. (1983) and by Gao & Behringer 
(1984) using liquid 4He. For a cylindrical layer, an instability related to the SVI 
occurs a t  R,, with R, x 1.15 when r x 7.5. For such an aspect ratio, the number of 
convection rolls should be roughly comparable with that in either of the present 
containers. This low value, R, z 1.15, has been explained by Pocheau et al. (1985) 
who found that the instability a t  R, occurs as a local manifestation of the SVI in the 
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curved non-uniform rolls that exist above Re. Behringer et al. (1983) and Gao & 
Behringer (1984) showed that when the instability was encountered, periodic motion 
ensued which was usually characterized by a finite amplitude and a frequency ,f, 
which vanished at the onset Rayleigh number R, as f - (R-Rl) i .  G. Metcalfe and 
D. G. Schaeffer (private communication) have discussed why the SVI should be 
modified in cylindrical containers to produce the observed periodic behaviour. 

( c )  Moderate-size rectangular containers : Of particular importance to this work are 
flow visualizations in moderate-size rectangular layers of water or ethanol (2 5 Pr ,< 
20) by Walden et al. (1984) and by Kolodner et al. (1986). Using containers with 
L, x L, z 10 x 5, they found rolls parallel to the short side of the container just above 
R,. If the Rayleigh number was increased, the original rolls lost stability a t  a 
wavevector and Rayleigh number that corresponded reasonably well with the 
predictions for the SVI or, where appropriate, the knot instability (KI),  an 
instability that is not relevant for liquid-helium Prandtl numbers. After a fairly short 
time, of order t,, the vertical thermal diffusion time, defined by 

t, = d 2 / K ,  ( 5 )  

the rolls reformed with a smaller mean wavevector. Thus, the SVI was manifested in 
a moderate-size container as a wavenumber reduction mechanism as a consequence 
of the negative slopes of the SVI and K I  curves. If the Rayleigh number was 
increased further, then the SVI or K I  boundary was again encountered. Yet another 
decrease in the number of convection rolls, with a corresponding decrease in a 
occurred. The reduction of the wavevector was found to occur until a stability 
boundary with positive slope, the knot instability (Clever & Busse 1974; Busse & 
Clever 1979 ; Bolton et al. 1986), was encountered. At this point, further wavenumber 
reduction was no longer possible, parallel rolls ceased to be stable, and the flow was 
no longer steady in time. 

Although the flow patterns in liquid-helium experiments have not yet been 
directly observed, we expect that the convective rolls in the present rectangular 
containers are most likely to form a parallel-roll pattern with an average wavevector 
close to the infinite-layer prediction a, = 3.117. Additional evidence for this 
assumption is given in the work of Kessler et al. (1984). Using air in a small 
rectangular container with dimensions L, x L, = 4 x 2, they found convection rolls 
aligned with the short side. With increasing R, a set of transitions was observed. In 
this case, the transitions were clearly associated with changes in the number of 
convection rolls, but the Rayleigh numbers a t  which the transitions occurred were 
substantially higher than the predictions of Busse & Clever (1979) for the SVI.. The 
latter fact is attributable to the strong influence of the sidewalls in their small-L 
experiment. 

We estimate that the wavevector in the present experiments will be 

2x 
a x -  (6) L, n' 

where n is the number of roll pairs and L, is the long dimension, expressed in units 
of d. The most likely value of n near R, should make a as close as possible to a,. For 
cell 11, n = 9 yields a = 3.11, a value quite close to the preferred one. We expect that 
the SVI will be encountered a t  near critical wavevectors; i.e. from figure 1, near 
RIR, = 1.37. For cell I the situation is more complicated; the choice n = 6 yields 
a = 2.81, and the choice n = 7 yields a = 3.28. These two values of a bracket the 
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FIGURE 2 .  Scale drawing depicting the long side of the rectangular containers used in this 
experiment. 

‘optimum’ choice, a,, with comparable critical Rayleigh numbers, and it is not clear 
which value of n is preferred or whether an odd number of rolls will form. The SVI 
boundary occurs for the Prandtl numbers of interest at R = 2.ORC for a = 2.81, and 
at 1.3RC for a = 3.28. As discussed below, the experiments indicate that n = 6 is the 
most reasonable choice. 

2. Apparatus and experimental procedure 
The experiments were carried out in a cryostat similar to that described by 

Behringer & Ahlers (1982), and the interested reader is referred to that work for more 
details. Aside from their rectangular geometry, the containers, shown in cross-section 
in figure 2, are qualitatively similar to other cryogenic containers having circular 
cross-sections (Behringer & Ahlers 1982 ; Gao et al. 1987). In particular, the faces of 
these containers were made of OFHC copper parallelopipeds. The surfaces forming 
the fluid boundaries were lapped to an optically reflecting finish. Using an optical flat 
and a monochromatic light sFurce, we determined that the faces were flat to between 
2A and 4h, where h x 6000 A was the wavelength of the light source. The estimated 
variation of d for each cell is given in table 1. The sidewalls were made of thin 
stainless steel (wall thickness = 0.015 cm). In order to keep these walls a t  the same 
temperature as the interior copper plugs forming the horizontal boundaries, strips of 
copper were attached to the outside and to the base of the plugs using Emerson and 
Cummings 1266 epoxy. 

As in previous cryogenic experiments, we used the heat flux Q as the independent 
parameter ; the Rayleigh number was then determined by measuring AT at fixed Q 
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and a t  a fixed top temperature. We obtained AT using differential germanium 
resistance thermometry. By fixing Q rather than AT, we obtained precise data with 
considerably more facility than we would have obtained by fixing AT and measuring 
Q; the equivalence of the two methods in the context of this type of experiment has 
been demonstrated elsewhere (Gao & Behringer 1984). Near the onset of convection, 
measurements were made by first fixing the top temperature, setting AT to a value 
near AT,, and then increasing or decreasing Q by small steps. Typically, five or six 
steps were made, and then Q was set to zero or some other convenient reference value 
to check for possible thermometry drifts. After each small step, the system was 
allowed to equilibrate for times of order lot ,  to 20t,. Typical step sizes were between 
O.OlQ,  and 0.O5Qc, where Q, is the value of Q at  R,. In  the region near R,, where 
steady convection was obtainable, no dependence on step size or direction was 
seen. 

All the data were obtained with liquid 4He a t  saturated vapour pressure. The top 
boundary of the fluid was held a t  a fixed temperature which was unique to each 
container. For cell I this temperature was 2.2042 K ;  for cell I1 it was 2.3485 K. 
Hence, the Prandtl numbers were somewhat different for the two containers. For cell 
I, P = 0.70, and for cell 11, P = 0.52. These values were obtained from the data 
tabulated by Barenghi, Donnelly & Lucas (1981), and evaluated at the mean 
temperature of each layer when R was a t  its critical value. The relatively small 
difference in P,  0.52 versus 0.70, has a moderately strong effect on the stability 
diagram. Thus, figure 1 ( b )  shows the stability diagram for P = 0.70 (the case for cell 
I) and figure 1 ( a )  shows the stability diagram for P = 0.52 (the case for cell 11). 

An additional consideration is the temperature variation of the fluid parameters 
such as the viscosity, etc. I n  the usual Oberbeck-Boussinesq approximation, these 
quantities are assumed constant. The effect of departures from the Oberbeck- 
Boussinesq approximation has been considered theoretically by Busse (1967) and 
experimentally by Walden & Ahlers (1981). A useful parameter for considering 
departures from this approximation is Busse’s parameter P ,  which was also denoted 
by Q in the work of Walden & Ahlers. To avoid confusion with other symbols used 
in this work, we shall use Qo, for this quantity. Estimates of QOB for our two cells 
a t  the onset of convection are given in table 1. From these estimates, we conclude 
that non-Boussinesq effects are not a serious consideration for this work. 

As a final point in this section, we note that in the discussion below we often use 
R, as a convenient normalization for the Rayleigh numbers of interest. In  the 
absence of temperature variations of the thermo-hydrodynamic parameters 
contained in the Rayleigh number, the ratio RIR, is equivalent to the ratio of the 
temperature difference AT to the temperature difference AT,. Here, AT is the 
temperature difference at R, and AT, is the temperature difference a t  R,. Throughout 
this work, we have corrected for temperature variations in the fluid parameters so 
that values of RIR, are not simply the ratio ATIAT,. 

3. Results 
3.1. Summary 

We first provide a brief summary of our findings which we then develop more fully 
in the rest of this section. Briefly, we find that :  

(a)  For rectangular layers, there is a Rayleigh-number regime above the onset of 
convection, R, < R < R, for which heat-transport measurements with a precision of 
zi 0.03 YO indicate steady convective flow. Below the onset of the instability at R,, 
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Cell I Cell I1 

2.29 1.42 
1.74 R:IRc 2.38 

R;IRC 3.02 2.03 
3.39 2.53 ( = R,) 
3.85 
4.06 
6.68 

R81 R, - 1.22 
RJRC 

R2l Rc 2.81 1.88 

R31 Rc 
R:IRC 
R4IRc 
RZIRC 

- 
__ 
-_ 
-_ R51 R, 7.14( = R,) 

TABLE 2. Transition Rayleigh numbers for cells I and I1 

the Nusselt curves, which are shown in figures 3 and 4 for the two containers studied 
here, evolve smoothly as functions of R (with a slight exception for cell 11). At R,, 
the initial flow patterns lose stability. It seems likely that the flow patterns also 
evolve smoothly with increasing R up to R,, with again a slight exception in the case 
of cell 11, Measurements (Behringer et al. 1983; Gao & Behringer 1984) on cylindrical 
containers of liquid helium also indicate steady flow between R, and an appropriate 
R,, but: 

( 6 )  The value R, of R a t  which the initial flow pattern loses stability is significantly 
higher for the present rectangular containers than for those with a circular cross- 
section. The present values of R, are slightly higher than predictions for the SVI. We 
attribute this difference to finite-size effects, and we conclude that our results are 
essentially in agreement with theory. Specifically, R, = 2.29RC for cell I, whereas we 
expect R, = 2.0Rc from theory. For cell 11, there is a small reproducible increase in 
the Nusselt curve a t  R, = 1.22Rc indicating a small pattern adjustment. However, 
the first major change occurs a t  R ,  = 1.42Rc, which is to be compared with the 
expected value R, = 1.37RC. 

( c )  Long transients are seen just above R,, in both cells I and TI, but particularly 
for the latter. For both containers, there is a value of R ,  RT, with RT > R,, for which 
no long transients are seen and steady flow is obtained after relatively short 
equilibration times. 

( d )  There are still higher Rayleigh numbers R,, R,, and for cell I, an R, and R, a t  
which steady rapidly equilibrating flow yields to very long transients and/or time 
dependence, with steady flow reappearing at R: where Ri < R: < Ri+,. Thus, 
transientsltime dependence starting a t  R, stop a t  R,*. The values of R,, R,, ... are 
indicated for each container in table 2 .  Up to R,, the observed transition Rayleigh 
numbers are in agreement with theory and expectations for the wavenumber, and 
these results are similar to observations in higher-Prandtl-number fluids. For cell I 
there are some additional transitions which do not fit simply into the current 
understanding. 

( e )  The values R,, R,, ... are reproducible within about +0.05Rc, whereas the type 
of transientltime dependence seen just above each of these Rayleigh numbers is not 
necessarily exactly reproducible. 

(f) There is a Rayleigh number R, a t  which persistent time dependence sets in; 
for R > R,, no steady flow is seen. 
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FIGURE 3. Nusselt number vs. Rayleigh number near the onset of convection and up to R, for cell 
I. Inset: Nusselt number for cell I vs. RIR,. 0 ,  increasing Rayleigh number; ., decreasing 
Rayleigh number following the transition to a new roll pattern at  R,. 

3.2. SteadyJlow near R, 

We now discuss these points in more detail starting with the results near R,. Figures 
3 and 4 show heat-transport curves near the onset of convection and up to R, for cells 
I and I1 respective1y.t The critical values of the Rayleigh number were determined 
from the values of AT,, the measured result for AT at the onset of convection, as 
given in table 1, and from the thermohydrodynamic data tabulated by Barenghi 
et al. (1981). We obtained R, = 1590+280 for cell I, and R, = 1750f200 for cell 11. 
Our data overlap the infinite-layer prediction R, = 1708. To our knowledge, there are 
no predictions of R, for rectangles comparable to those used in our experiments. 
However, we expect from Ahlers et al. (1981) and from Cross et al. (1983) that finite- 
size effects will provide a fractional correction of order LZ2- too small to be 
detectable here because of the relatively large uncertainty in the fluid parameters. 

Convection is signalled by the initial rise of N above unity a t  R,. The slope, 

dN 
N ,  = R,-, 

dR (7)  

for R just bigger than R, is 0.56 for cell I and 0.70 for cell 11. 
These results for N ,  were obtained by fitting t o  linear and quadratic polynomials 

t A tabulation of the data may be obtained from R.P.B. 
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FIGURE 4. Nusselt number us. Rayleigh number near the onset of convection and up to R, for 
cell 11. 

in AT. Provided that the rounded region near R, was excluded and that only 
Rayleigh numbers up to - 1.2R, were included, the fitted slopes did not depend 
significantly on whether a quadratic or linear fit was used. 

Owing to the presence of sidewalls, the data for N ,  are lower than the prediction 

N,, = (0.69942-0.00472Pr-l +0.00832Pr-2)-1, (8) 

given by Schliiter, Lortz & Busse (1965) for a horizontally infinite layer of straight 
parallel rolls. Specifically, for the Prandtl numbers of these experiments, N , ,  = 1.4. 
To our knowledge, there are no data of comparable Prandtl number obtained in 
rectangular containers with which to make comparison. However, data for a room- 
temperature fluid (water) in a rectangle (Ahlers & Rehberg 1986) and for cylindrically 
confined liquid helium (Gao et al. 1987) have been reported. In  order to make a 
comparison between the room-temperature results and our own, we adjusted the 
former for Prandtl-number effects using (8). In  figure 5 ,  we have compared our 
results to the data of other experiments. We have presented the data for rectangles 
as a function of iLz, and the results of Gao et al. (1987) for cylindrical containers of 
liquid helium as a function of r. Hence, containers of roughly comparable numbers 
of convection rolls will be compared, regardless of the geometry. The data of Gao 
et al. are represented by solid lines a t  low r a n d  by filled circles a t  high r. The changes 
with r in the number of convection rolls present in the cylinders is evident. There is 
qualitative similarity between the results for cylinders and rectangles, although N ,  
for the rectangles may be increasing more rapidly with ;Lz than does N,(T) for the 
cylinders. There are, to our knowledge, no calculations that predict the effect on the 
Nusselt number of sidewalls in a rectangular container with rigid boundaries and 
horizontal dimensions and Prandtl numbers appropriate to our experiments. 
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1 I I I I I 1 
2 4  6 8 10 12 14 16 

r, w z  

FIGURE 5. A comparison of the slopes N ,  found for the present rectangular containers, another 
rectangular container using a room-temperature fluid (water, Pr = 6), and recent results obtained 
with cylindrical containers of liquid helium. Results for rectangular containers are shown as a 
function of iL,. Those for cylindrical containers are shown as a function of aspect ratio r. B, results 
of the present experiments; A, the result N ,  = 0.90 of Ahlers 6 Rehberg (1985) for a rectangular 
layer of water with a correction made for Prandtl number using (8) ; 0 ,  the results of Gao et al. 
(1987) for cylindrically confined layers of liquid helium, where the solid lines indicate in a summary 
fashion results for about 40 aspect ratios. 

At R = 1.22RC, the heat transport for cell I1 showed a small discontinuity, about 
0.005 in N ,  which was found to be completely reproducible. The time-evolution of AT 
following a step increase in Q from a value just below to a value just above the 
discontinuity, is shown in figure 6. Here, as in later figures, time variations 6T in AT 
are normalized by the value ATc of the temperature difference at the onset of 
convection. The effect of this small transition is not particularly pronounced on the 
scale of figure 4. We note that no similar effect was seen in cell I .  Since R = 1.22RC 
is not near any stability boundary for 01 - a,, we surmize that an imperfection 
routinely formed in the convection rolls of cell 11, and that some adjustment in the 
imperfection was responsible for the observed effect on the heat transport. That is, 
we assume that this effect is not associated with the SVI on straight parallel rolls. Our 
assumption is further supported by the fact that the Nusselt curve increases slightly 
as R is increased through R,. On encountering the SVI we expect the wavenumber 
to decrease, an event that would cause N to decrease, according to Busse & Clever 
(1979). 

In the Nusselt curves of figures 3 and 4, there is rounding apparent over a range 
of x0 .05RC.  The rounding in these experiments is comparable with what was 
observed in cylindrically confined layers of liquid helium by Gao et al. (1987). In  other 
liquid-helium measurements with cylindrical containers (Behringer & Ahlers 1982) 
the rounded region was smaller, x O.OIRc to x 0.02Rc. Possible causes for the 
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FIGURE 6. A time series showing the relaxation of the temperature difference AT just above R, = 
1.22RC in cell 11. Here, the heat current has been increased by an amount corresponding to about 
0.02Rc and then held constant. The variations 6T of AT are scaled by ATc, the value of  AT at the 
onset of convection; time is expressed in units oft,, the vertical diffusion time. 

rounding may be imperfections in the spacing d of the layer or imperfect thermal 
conditions at the vertical boundaries. However, the non-uniformities in d are about 
the same for the present experiments and those of Behringer & Ahlers (1982) (see also 
table 1). A quantitative description of non-uniformities associated with thermal 
conditions at the boundaries is very difficult. Hence, the present data cannot provide 
convincing evidence for the origin of the rounding. 

3.3. Instabilities and the onset of time-dependence 
3.3.1. The transition at R, 

The values of R, found for the two cells can be understood in terms of the predicted 
SVI stability boundary and reasonable assumptions for the mean wavevector. For 
cell 11, the observed value of R, = 1.42Rc is in good agreement with the infinite- 
parallel-roll prediction of 1.37Rc if Pr = 0.52 and a = 3.11 (which we expect to be 
nearly the case for this container). For cell I, the first transition a t  R, = 2.29 
indicates that the average wavevector is fairly small. As in 5 1, if we assume six roll 
pairs corresponding to an average wavevector of 2.81, we would expect from the 
predictions of Busse & Clever (1979), that the SVI would occur a t  2.0Rc, which is 
13% lower than the observed value. It is not surprising that for a moderate-size 
container such as cell I, the stability boundary would occur a t  somewhat higher R 
than predictions for an unbounded layer. 

The transition at R, in both cells is characterized by long transients for R just 
bigger than R,. Examples are given in figure 7. Specifically, between R, and a 
Rayleigh number RT, given for each container in table 2, long-term transient 
behaviour was observed. The time needed to obtain equilibrium just above R, for cell 
I1 ranged from a few hours ( x 1O2t,) to, in one case, about 20 hours ( x 103t,). For cell 
I, the transients tended to be somewhat shorter. For both containers, once RT was 
exceeded, steady flow was again obtainable with time constants of a few t,. Figure 
7 ( a )  shows a long transient for cell I when R is just greater than R,, and 7 ( b )  shows 
results just above R ,  for cell I I .  I n  each part of the figure, the time evolution of AT 
is given following an increase of Q by an amount corresponding to a change in 
Rayleigh number of about 0.03Rc. The analysis using figure 1 and (6) suggests that 
above R: the roll wavevectors have decreased to values of about 2.34 for c,ell I 
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FIGURE 7. Transients occurring just above (a) R, = 2.29Rc for cell I and ( b )  R ,  = 1.42R, for cell 11. 
The time series show 6T/ATc vs. tit, at fixed heat flux following a small increase in the heat flux 
from just below to just above R,. 

(corresponding to 5 roll pairs) and 2.76 for cell IT (corresponding to eight roll 
pairs). 

If after reaching a steady state above R, the Rayleigh number was slowly 
decreased, the Nusselt number followed a different curve from that obtained with 
increasing R. This is demonstrated in figure 3-inset for cell I .  In  this case, when R was 
lowered to 1.48R, +0.06RC, a transition occurred and the Nusselt number returned 
to the curve that was obtained with increasing R. We associate this transition with 
the Eckhaus instability (see figure 1). If the Rayleigh number is decreased from 
within the stable region at a = 2.3, the Eckhaus instability is predicted to occur at  
1.28R,. Assuming that a t  R, for cell I the wavenumber changes from 2.81 to 2.34, we 
would have expected from the calculations of Clever & Busse (1974) that N would 
have decreased by about 0.09. However, the observed decrease in N is considerably 
smaller, about 0.03. Thus, our results in this case are qualitatively, but not 
quantitatively in agreement with predictions. 

Our observations are similar in a number of ways to  behaviour reported by 
Kolodner et al. (1986) for somewhat smaller rectangular layers (L ,  x L, w 10 x 5) of 
water. Using flow-visualization techniques, these authors found that the number of 
convection rolls decreased rapidly on reaching a point corresponding to the SVI 
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boundary or the K I  boundary. When the wavevector decreased, the system was 
returned to a point within the stable region, where a steady parallel-roll convection 
pattern was again found. It seems likely that the flow in our container behaves 
similarly. However, there is an interesting difference between our observations and 
those of Kolodner et al. The latter found that the SVI-induced, or in some cases KI- 
induced, reduction in the number of rolls occurred rapidly - in a few vertical diffusion 
times. Yet, in our experiments, this adjustment process was very slow and 
characterized by long transients over a range of Rayleigh numbers near the 
transition. Although we do not yet have an explanation for this difference in 
relaxation rates, the larger horizontal dimensions of our containers versus those of 
Kolodner et al. should be noted. 

Kolodner et al. could generate either an even or odd number of convection rolls a t  
a given Rayleigh number. From the reproducibility of our observated values of the 
Ri, we infer that the number of convection rolls a t  a given Rayleigh number was 
always the same. This seems likely since, in our experiments, the convective states 
were always prepared in the same manner - by small step increases in Q,  with time 
for equilibration after each step. An interpretation of our data is most reasonable if 
we assume that there were always an even number of rolls in both containers. 

3.3.2. The transition at R, 
As R was increased above RT, we found that a regime of steady flow gave way a t  

R, to a new instability. From ( 6 )  figure 1 ,  and our previous observations of R,, we 
would expect transitions a t  2.86Rc and 1.76Rc for cells I and I1 respectively. These 
estimates are quite close to the observed values of R,, namely for cell I, R, = 2.87R,, 
and for cell 11, R, = 1.88R,. Referring to figure 1 ,  we would expect that above 
R, the pattern for cell I would consist offour roll pairs corresponding to a wavevector 
of 1.88, and the pattern for cell I1 would consist of seven roll pairs corresponding to 
a wavevector of 2.42. 

The dynamics near R, were found to be different for the two containers as 
demonstrated by figure 8. For cell I long transients were seen which decayed to a 
steady state. For cell 11, an apparently robust periodic flow was observed. In  either 
case, the dynamics that we observe are significantly different from the rapid decrease 
in roll number reported by Kolodner et al. (1986). 

For both cell I and cell I1 there was a region above R, for which steady flow was 
obtained. This new regime of steady flow began at a Rayleigh number R:, given for 
each container in table 2. 

3.3.3. Oscillatory instability, additional transitions and the onset of turbulence 
For cell 11, the steady-flow regime starting a t  R,* was the last encountered as R was 

increased; a t  R = R, = R, = 2.53Rc, periodic time dependence was encountered 
(figure 9a) .  This periodic flow seen in cell I1 persisted for only a short range in R, and 
then was supplanted by non-periodic flow beginning a t  2.87Rc (figure 9 b ) .  The flow 
remained non-periodic up to R = 11.7Rc, the maximum Rayleigh number for cell I1 
that we could reach with the present apparatus. Power spectra for the two time series 
of figure 9 are given in figure 10, where the frequencies have been expressed in units 
of ti ' .  Here, the power is calculated from variations 6T( t )  of AT with 6T normalized 
by ATc. Although a transition to periodic flow associated with the oscillatory 
instability might reasonably occur a t  the observed R, of cell 11, the experiment is 
characterized by a frequency that is small compared to what is indicated by the 
calculations of Clever and Busse. Using an estimated wavevector a x 2.1, these 
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FIGURE 8. Time series similar to those shown in figure 7, but  for the transition at  R,: (a) cell I; 
(6) cell 11. 

calculations indicate a frequency f for the fastest-growing oscillatory mode of f t v  2 
2. The experimental value is ft, = 1.55 x lo-’. In  regard to the difference in the 
predicted and observed frequencies, we note that the predictions apply to 
horizontally unbounded layers. The instabilities are expected to occur with 
wavevectors that are transverse to the original convection rolls. In  the experiments, 
this direction corresponds to the short dimension of the container, and the instability 
may be significantly affected by finite-size effects. Alternatively, Walden et al. (1984) 
have found that when the wavevector and the Rayleigh number are near the 
intersection point of two instabilities, such as the S V I  and oscillatory instability, the 
resulting dynamics may not correspond to what is expected for either type of mode. 
We note that in figure 10(a) there is a slight knee a t  f t v  w 3, which is a frequency 
appropriate to the oscillatory instability. The non-periodic flow found in cell I1 above 
the periodic state is characterized by a broadband spectrum (figure lob ) .  The 
predicted oscillatory instability frequency for cz = 2.1 does not fall close to any 
feature in the spectrum of figure lO(b) .  
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FIGURE 9. Time series near R, for cell 11. (a )  Periodic oscillations following a transient for R = 
2.5322,; ( b )  The non-periodic flow that evolves a t  a somewhat higher Rayleigh number, R = 2.87R,. 
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FIGURE 10. Power spectra for the time series of figure 9 :  (a) corresponds to 9(a )  and (b) to 9 ( b ) .  

It is interesting to compare spectra such as those of figure 10 ( a )  to results obtained 
by Ahlers & Behringer (1978a,b) for liquid helium contained in a cylindrical 
geometry. Here, the aspect ratio was r = 4.72. In  this case, after the onset of chaotic 
flow, a shoulder was also seen in the frequency range of the Busse and Clever 
predictions, superposed on a broadband spectrum. Some insight into this behaviour 
is provided by visualization studies by Pocheau et al. (1985). The fluid used in this 
case was argon gas with a Prandtl number of 0.69. Pocheau et al. found that the 
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FIGURE 11. The onset of periodic flow in cell I: (a )  a section of EL time series at 3.39RC, 
the corresponding power spectrum. 

I 

and ( b )  

oscillatory instability occurs locally where the wavevector is appropriate to the 
instability. We assume that such phenomena also occur in our rectangular containers. 

By contrast, cell I showed two more episodes of time-dependent flow followed by 
steady flow before the onset of persistent time dependence at  R, = R,. Specifically, 
time dependence restarted at  R, = 3.39R2, as periodic flow (figure 11 a) .  This periodic 
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flow, which occurs at a Rayleigh number that is appropriate to the predictions for the 
oscillatory instability, is qualitatively similar to what we have just considered for cell 
I1 a t  R,. In particular, the dimensionless frequency was 9.22 x lop2, a value that is 
also about an order-of-magnitude lower than the theoretically expected value for the 
fastest-growing oscillatory mode on a set of rolls with a: = 1.88. The spectrum 
obtained from figure 11 ( a )  is shown in figure 11 ( b ) .  As for cell 11, there is a knee at  
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FIGLTRE 12. Time series and power spectra for cell I above R,. (a )  Non-periodic flow for cell I a t  
R = 4.30RC. ( b )  the power spectrum corresponding to ( a ) ;  (c) a periodic state at 6.02R,. 

a frequency that is appropriate to the oscillatory instability. In  this case, the knee 
occurs at  f t ,  x 5.  The periodic flow was found only over a narrow range and was 
replaced a t  R = 3.55R, by long transients corresponding to a time-monotonic 
increase of R a t  fixed Q .  These long transients were found up to RZ = 3.85R, where 
a narrow window, 3.85R, < R < 4.0612,, of steady states existed which were 
characterized by rapid ( -  a few t , )  relaxation times. A t  R, = 4.06R, non-periodic 
flow characterized by broadband spectra once again started (figure 12a, b) .  Between 
4,06R, and 6.68RC, the flow remained non-periodic with the exception of a complex 
periodic flow in the range 6.02R, < R < 6.12R, (figure 12c). This periodic state is 
reminiscent of the periodic flows reported by Ahlers & Walden (1980) and by 
Behringer et al. (1982) for cylindrical containers. At R,* = 6.68R,, a band of steady 
states was again found extending up to R, = R, = 7.14 R,. These states persisted for 
times up to z 350 t, without decaying into a time-dependent state. In  regard to this 
state, it is interesting to examine the integrated power 

M ,  = JP(w)du, (9) 

where P is the power obtained from time variations GTIAT, a t  fixed Q .  Equivalently, 
M ,  is the variance of GT/AT, in the time domain. M ,  is shown as a function of R/  
R, for the two cells in figure 13. For cell I, data for the region 6.68R, d R d 7.14R,, 
indicated by the arrows in figure 13(a), are off the scale. Indeed, we did not detect 
any time dependence in that Rayleigh-number range, and the integrated power 
there, M ,  = 2 x lop6, is due only to instrumental noise. As R was increased above 
7.14R, in cell I, M ,  generally increased, although steady flow was found again a t  the 
single Rayleigh number R = 8,13R,. By contrast, the integrated power for cell I1 
increased steadily with R above 2.53R, = R, for that container. 

The steady flows found for 3.85RC d R d 4.06R,, and particularly for 6.68RC d 
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FIGURE 13. The zeroth moment of the power M ,  = jP(w) dw : (a )  cell I;  ( b )  cell 11. The arrows in (a )  
indicate the range over which the power has dropped to the long-time instrumental noise level of 
2 x a level which would be off the scale of the figure. 

R < 7.14RC and for 8.13Rc in cell I are surprising. In the stability analysis of Clever & 
Busse (1974) and Busse & Clever (1979), parallel rolls in a fluid of Pr = 0.70 are 
unstable to some instability regardless of a when R 2 4Rc, although once the 
stability boundaries have been crossed, time-dependence is not necessarily predicted. 
However, the experiments by Walden et al. (1984) and by Kolodner et al. (1986), with 
somewhat smaller horizontal dimensions than cell I, have not shown steady flow once 
the upper stability boundaries comparable with those in figure 1 have been crossed. 
Thus, we would have anticipated that the transition at R, with a wavenumber of 
a x 1.88, would have placed the system outside the stable region and that thereafter 
no steady states should be observed. 

4. Summary 
These experiments have probed the onset of steady convection near R,, the 

occurrence of secondary instabilities, and the onset of chaotic flow. Results near the 
onset of convection -the critical Rayleigh numbers and the initial slopes N ,  of the 
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Nusselt curve - are respectively in agreement with theory and comparable with 
results in moderate-aspect-ratio cylindrical containers. An investigation of the 
secondary instabilities shows transitions a t  Rayleigh numbers R, and R, that are in 
agreement with predictions for the skewed-varicose instability. These observations 
are also similar to results obtained with higher-Prandtl-number fluids. The next 
instability following R, was characterized by oscillations, as one would expect from 
the stability theories of Busse and Clever ; however, the frequency was lower than 
these calculations suggest. Possibly, the depression in the frequency may be due to 
finite-size effects or to competition with the skewed-varicose instability. Further 
investigation, particularly with flow visualization, would be useful here. 

A comparison of our data to the small-L calculations of Kessler et al. (1984), 
Kessler (1987), and Yahata (1986, 1987) is also of interest. The Hopf bifurcation that 
Kessler et al. predict may correspond to the periodic states which we see briefly at  
R,. However, in the calculations of Kessler, the periodic state is stable over a broad 
range of Rayleigh numbers. The difference between these calculations and our 
experiments may be attributed to the smaller container size assumed in the former 
(Lz x L, = 4 x 2) and to the fact that roll-number changes do not occur in the former. 
In the calculations by Yahata, also for small L, and L,, periodic states are likewise 
found. One of these in particular, the real mode instability, may be related to the 
experimental observations of state changes at R, and R,. I n  the calculations, the 
original convection pattern becomes unstable to a real mode corresponding to a 
different pattern. However, there is no stable state associated with the new pattern, 
and a periodic state typically evolves instead. The differences between these 
calculations and the experiments seems to be that in the experiments, unlike the 
theory, a second stable state is available when the first state becomes unstable; 
consequently, the system eventually evolves to this second steady state. It seems 
possible that the availability of a nearby second state is related to the relatively large 
horizontal dimensions of the experiments. 

Two other interesting observations remain to be explained. The first of these is the 
existence of apparently stable states a t  Rayleigh numbers well above those for which 
parallel rolls in an unbounded container are predicted to be unstable. It is unlikely 
that these steady states are characterized by straight' rolls. We know of no previous 
experimental result that would have led us to expect their existence. The second 
unexplained observation of these experiments is the long timescales for the evolution 
of a new roll pattern following an encounter with the skewed-varicose instability. We 
find timescales that are of order 1O2t, or higher (i.e. comparable with or larger than 
L:t,) for relaxation, whereas a t  higher Prandtl numbers the relaxation occurs over 
a timescale of % t,. 

This work has benefitted from discussions with Dr P .  Kolodner, Dr C. Surko and 
Dr R. Walden. Support has been provided by the National Science Foundation 
under Low Temperature Physics Grant No. DMR-8314673. 
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